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Executive Summary

This report describes the MFIX (M ultiphase F low with Interphase eXchanges) com-
puter model. MFIX is a general-purpose hydrodynamic model that describes chemical reac-
tions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in
energy conversion and chemical processing reactors. MFIX calculations give detailed infor-
mation on pressure, temperature, composition, and velocity distributions in the reactors. With
such information, the engineer can visualize the conditions in the reactor, conduct parametric
studies and what-if experiments, and, thereby, assist in the design process.

The MFIX model, developed at the Morgantown Energy Technology Center (METC),
has the following capabilities: mass and momentum balance equations for gas and multiple
solids phases; a gas phase and two solids phase energy equations; an arbitrary number of
species balance equations for each of the phases; granular stress equations based on kinetic
theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional
Cartesian or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-
permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary,
direct-access, output files that minimize disk storage and accelerate data retrieval; and exten-
sive error reporting.

This report, which is Volume 1 of the code documentation, describes the hydrodynamic
theory used in the model: the conservation equations, constitutive relations, and the initial and
boundary conditions. The literature on the hydrodynamic theory is briefly surveyed, and the
bases for the different parts of the model are highlighted.
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1 Introduction

Dense multiphase flow reactors are part of many energy conversion and chemical proc-
essing units. In a circulating fluidized-bed combustor, for example, coal burns as it flows in a
dense gas-solids mixture. Another example is the Fluid Catalytic Cracking (FCC) riser, in
which oil contacts rapidly circulating catalyst particles and is converted into gasoline. 
Clearly, the hydrodynamics, heat transfer, reaction kinetics, and catalyst activity influence the
performance of the reactor. The design of such reactors traditionally relies on data from
laboratory-scale batch reactors or continuous pilot-scale units. Although many processes have
been successfully scaled-up in this manner, some notable failures have occurred (Squires,
Kwauk, and Avidan 1985; Krambeck et al. 1987). Also, in some cases the laboratory-scale
units exhibit different hydrodynamic behavior than do large-scale units, and intermediate
pilot-scale units are expensive to build and operate. Hydrodynamic models based on funda-
mental laws of mass, momentum, energy, and species conservation have the potential to fill
the data gaps in the results of laboratory- or pilot-scale experiments and, thereby, to aid in the
design of industrial reactors. The MFIX computer model is such a general-purpose hydrody-
namic model capable of describing chemical reactions and heat transfer in dense or dilute
fluid-solids flows.

The theoretical and numerical foundations of MFIX are based on a hydrodynamic
theory of fluidization. Hydrodynamic models have been developed and applied to describe
fluidization since the early 60's: Davidson (1961), Jackson (1963), Davidson and Harrison
(1963), Murray (1965), Pigford and Baron (1965), Soo (1967), Anderson and Jackson (1967),
Ruckenstein and Tzeculescu (1967), and Jackson (1970). In those studies, the hydrodynamic
models were used to study the stability of fluidization or to explore the details of bubble
motion; no attempt was made to solve the rather formidable set of partial differential equa-
tions constituting the model.

The advent of high-speed computers prompted attempts to solve these equations
numerically. In the late 70's, two projects funded by the U.S. Department of Energy (DOE)
were initiated to develop computer models of coal gasifiers based on the hydrodynamic
equations. The CHEMFLUB code, developed by Systems, Science, and Software Inc., solves
continuum equations (much like the MFIX equations) to describe gas and solids flow in
fluidized-bed gasifiers (Garg and Pritchett 1975; Schneyer et al. 1981; Blake and Chen 1981;
Richner et al. 1990). The FLAG code, developed by JAYCOR Inc., solves continuum equa-
tions to describe gas flow, but uses a particle-tracking method to describe solids flow (Scharff
et al. 1982). Somewhat in parallel to those efforts, Professor Gidaspow and coworkers at the
Illinois Institute of Technology (IIT) began to develop computer codes for describing fluidized
beds by adopting numerical techniques introduced by Harlow and Amsden (1975) and
incorporated in the K-FIX program (Rivard and Torrey 1977), which describes water-steam
flow. The subject of such numerical modeling has been reviewed in detail by Gidaspow
(1986).

As a result of the studies described in the previous paragraph, much progress has been
made toward developing comprehensive computer codes for describing fluidized beds. Based
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on recent reports, the following is a list of institutions developing numerical models of fluid-
ized beds that are similar to the MFIX code: Babcock and Wilcox Inc., Alliance Research
Center (Burge 1991), Argonne National Laboratory (Lyczkowski and Bouillard 1989), Illinois
Institute of Technology (IIT) (Ding and Gidaspow 1990), and Twente University of Tech-
nology (Kuipers et al. 1993).

Two-phase hydrodynamic models treat the fluid and the solids as two interpenetrating
continua; all the particles are considered to be identical, characterized by an effective diameter
and identical material properties. To describe phenomena such as particle segregation and
elutriation, however, the models must account for at least two types of particles, where each
particle type is characterized by a unique diameter and density. Such a multiparticle code
was developed at IIT (Syamlal 1985) from the single-particle code of Gidaspow and
Ettehadieh (1983). Following a suggestion of Soo (1967), each solids phase consists of the
particles with identical particle density and diameter. (See figure 1.) For example, a mixture
of two types of particles that differ in diameter or density or both is treated as composed of
two distinct solids phases, each with its own set of governing hydrodynamic equations. A
mixture, characterized by a distribution of particle diameters or densities or both, is described
in terms of a number of solids phases with diameters and densities obtained by discretizing
the distribution function. The IIT code was used to simulate segregation in a fluidized bed
(Syamlal 1985), material separation in an electrofluidized bed (Shi, Gidaspow, and Wasan
1987), and the explosive dissemination of particles (Gidaspow et al. 1984).

The multiparticle code was further enhanced at METC by the addition of improved

Figure 1. Multiphase Descriptions of a Fluid-Solids Mixture

numerical algorithms, a solids pressure term, an improved drag correlation, and granular stress
terms. A version of the code with thermal energy equations is called the NIMPF (Non-
Isothermal M ultiParticle F luidization) code (Syamlal 1987a; O'Brien and Syamlal 1990). The
code has been used at METC since 1985 to predict the two-dimensional, non-isothermal,
transient flows of the fluid and solids phases within a fluidized bed. Initially, the code was
used to model fundamental fluidization phenomena, such as single-bubble injections, jet
injections (Syamlal and O'Brien 1989), particle segregation (Syamlal and O'Brien 1988), and
circulating fluidized-bed dynamics (O'Brien and Syamlal 1991; O'Brien and Syamlal 1993) --
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all occurring in a nonreacting bed. These predictions were compared with experimental data
for code verification. More recently, the code has been used to study increasingly complex
and demanding fluidization conditions, including circulating fluidized-bed reactors, fluidized
beds with immersed heat transfer tubes (Rogers and Boyle 1991), fluidized beds with a filter,
and fluidized-bed reactors at high temperatures.

During its 6 years of METC service, the code continuously evolved to model these
complex fluidization conditions. As part of this evolution, a project was undertaken to
provide several much-needed enhancements to the code, as well as to compile and document
all previous code modifications. The result of this project is the MFIX code, which has the
following characteristics: mass and momentum balance equations for gas and multiple solids
phases; a gas phase and two solids phase energy equations; an arbitrary number of species
balance equations for each of the phases; granular stress equations based on kinetic theory and
frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or
cylindrical coordinate systems; nonuniform mesh size; impermeable and semipermeable
internal surfaces; user-friendly input data file; multiple, single-precision, binary, direct-access,
output files that minimize disk storage and accelerate data retrieval; and extensive error
reporting. In addition, two MFIX post-processor codes animate the results of the calculations
and retrieve and manipulate data from the output files.

Hydrodynamic modeling has the remarkable ability to synthesize data from various,
relatively simple experiments (for example, the drag on an isolated sphere or the volatilization
rate measured using a single layer of coal particles) and, thereby, to describe the time-
dependent distribution of fluid and solids volume fractions, velocities, pressure, temperatures,
and species mass fractions in industrial reactors, where measurement of such quantities might
be all but impossible. Such calculations, therefore, allow the designer to visualize the condi-
tions in the reactor, to understand how performance values change as operating conditions are
varied, to conduct what-if experiments, and, thereby, to assist in the design process.

With such power also come several limitations that the user must bear in mind. First,
the accuracy of the model's predictions may be limited for a variety of reasons: incomplete
formulation of the governing equations, insufficient knowledge of the constitutive relations,
unsatisfactory numerical treatment of the governing partial differential equations, insufficient
information on initial and boundary conditions, and the impracticality of using a large number
of nodes to resolve all the fine details of the flow. This implies the need for much caution
when designing simulations and interpreting results. Often, trends predicted by the model are
more useful than absolute values of various quantities.

A second limitation of hydrodynamic modeling is that an expert user is needed to
conduct simulations and to analyze results. To assist the user, the present code resolves many
of the difficulties in setting up simulations by using a special NAMELIST format in the input
data file that reports input errors and allows comment lines. There is no limitation on the
number of initial and boundary conditions. The code also does much run-time error reporting
and has a graphical post-processor. In addition, these manuals describe the theory and use of
the code in detail, so that with their help, someone with experience in computational fluid
dynamics could become an expert user in about 3 months.
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A third limitation is that hydrodynamic modeling requires significant computer
resources, although supercomputer facilities are not required. The availability of faster and
cheaper computers has made hydrodynamic modeling more affordable. Workstations costing
under $30,000 have been sufficient for METC's simulation studies. Nonetheless, the user
must clearly define the results expected from the simulation and avoid needless refinements
that increase computational time. Of course, the ultimate determinant should be the cost
effectiveness of the approach.

This report describes the hydrodynamic theory used to formulate the code: the
governing equations, constitutive relations, and the initial and boundary conditions. Other
information is available from the authors, including descriptions of the procedure to set up
simulations, to write input data files, to retrieve and visualize output data, and to interpret
simulation results; some examples of typical applications; the procedure to numerically solve
the governing equations; and the FORTRAN implementation of the numerical solution
scheme.
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2 Hydrodynamic Theory

  Assuming that the different phases can be mathematically described as interpenetrat-
ing continua, two distinct approaches can be used to derive the multiphase flow equations: 
the averaging approach and the mixture theory approach. In the averaging approach, the
equations are derived by space, time, or ensemble averaging of the local, instantaneous
balances for each of the phases (Anderson and Jackson 1967; Drew and Segel 1971; Ishii
1975; Joseph and Lundgren 1990). In the mixture theory approach, equations that are
generalizations of single-phase equations are postulated (Bowen 1976; Passman, Nunziato, and
Walsh 1983; Bedford and Drumheller 1983). Both approaches yield a similar set of balance
equations that must be closed by specifying several constitutive relations, such as a fluid-
phase equation of state, fluid-solids and solids-solids momentum transfer and heat transfer,
and fluid and solids phase stress tensors. The principle of material frame-indifference, the
second axiom of thermodynamics, material symmetry, and over-all balance equations for the
mixture yield several useful restrictions on such constitutive relations (Bowen 1976).

To proceed further toward solving practical problems of interest, it is necessary to
supply specific constitutive relations. This challenging task is accomplished by using a
variety of approaches, ranging from empirical information to kinetic theory. Most of the
differences between multiphase theories originate from such closure assumptions, some of
which are the subject of much debate. The governing equations developed here are based on
various sources, as has been described in this section, but the pervading influence of Professor
Jackson's work is evident.

Using the averaging approach to derive equations that describe interpenetrating
continua, the point variables are averaged over a region that is large compared with the
particle spacing but much smaller than the flow domain. New field variables, the phasic
volume fractions, are introduced to track the fraction of the averaging volume occupied by
various phases. These are denoted by εg for the fluid phase (also known as the void fraction)
and εsm for the mth solids phase. These volume fractions are assumed to be continuous
functions of space and time. By definition, the volume fractions of all of the phases must
sum to one:

where M is the total number of solids phases. The effective (macroscopic) density of the gas

(1) g   
M

 
m 1

 sm   1   ,

phase is 

(2)  
g    g  g
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and that of the solids phase is

which, for a two-phase system, is the same as the bulk density. Just as the actual (micro-

(3)  
sm    sm  sm  ,

scopic) densities appear in single-phase equations, these effective densities appear in all of
the multiphase equations.

2.1 Conservation of Mass

The continuity equation for the gas phase is 

There are M solids-phase continuity equations, each of the form

(4)       
 t

(  g g)    (  g g v g)   

Ng

n 1

Rgn .

The first term on the left in equations (4) and (5) accounts for the rate of mass accumulation

(5)       
 t    sm  sm       sm  sm  v sm   

Nsm

n 1

Rsmn   .

per unit volume, and the second term is the net rate of convective mass flux. The term on the
right accounts for interphase mass transfer because of chemical reactions or physical
processes, such as evaporation. (See section 2.4.)

2.1.1 Equation of State

The fluid phase can be modeled as a gas obeying the ideal gas law,

or as an incompressible fluid with a constant density. The user may specify any other

(6) g       Pg Mw
R T g

   ,

equation of state by modifying the equation of state subroutine (EOSG).

2.2 Conservation of Momentum

The gas-phase momentum balance is expressed as

where  is the gas-phase stress tensor, I 
gm is an interaction force representing the

(7)       
 t    g  g  v g       g  g  v g  v g    

  
Sg   g  g  g   

M

m 1

I gm  f  
g ,

momentum transfer between the gas phase and the mth solids phase, and  is the flowf g

resistance offered by internal porous surfaces. (See section 2.6.5.) The momentum equation
for the mth solids phase is
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where  is the stress tensor for the mth solids phase. The term I 
lm is the interaction force

(8)       
 t    sm  sm  v sm       sm  sm  v sm  v sm    

  
Ssm   sm  sm  g  I  

gm   

M

l  1
l  m

I ml   ,

between the mth and lth solids phases. The first term on the left in these momentum equations
represents the net rate of momentum increase. The second term on the left represents the net
rate of momentum transfer by convection. The first term on the right represents normal and
shear surface forces, while the second term represents body forces (gravity in this case). The
next term in equation (7) represents the momentum transfer between the fluid and solids
phases; the final term represents the momentum transfer between the fluid and a rigid porous
structure. The last two terms in equation (8) represent the momentum exchange between the
fluid and solids phases and between the different solids phases, from left to right.

2.2.1 Fluid-Solids Momentum Transfer

In the momentum conservation equations, (7) and (8), the term Igm accounts for the
interaction force, or momentum transfer, between the gas phase and the mth solids phase. The
mechanisms and formulation of interaction forces have been reviewed in detail by Johnson,
Massoudi, and Rajagopal (1990). From studies on the dynamics of a single particle in a fluid,
several different mechanisms have been identified: drag force, caused by velocity differences
between the phases; buoyancy, caused by the fluid pressure gradient; virtual mass effect,
caused by relative acceleration between phases; Saffman lift force, caused by fluid-velocity
gradients; Magnus force, caused by particle spin; Basset force, which depends upon the
history of the particle's motion through the fluid; Faxen force, which is a correction applied to
the virtual mass effect and Basset force to account for fluid-velocity gradients; and forces
caused by temperature and density gradients.

Several other factors need to be considered when the formulas for single particle
systems are generalized to describe interaction forces in realistic multiparticle systems with
chemical reactions.

One, the effect of the proximity of other particles must be accounted for. This most
important effect implies that the drag force is a function of the solids volume fraction,
in addition to the particle Reynolds number, and must be described by formulas
deduced from experimental data, as discussed in the following paragraphs.

Two, the single-particle interaction force must be corrected to account for the effect of
mass transfer between the phases, as in the case of coal devolatilization or combustion,
for example (Bird, Stewart, and Lightfoot 1960, p.658; Montlucon 1975).

Three, the momentum transfer accompanying such mass transfer must be included in
the interaction force.

8



Four, the above formulations for fluid-solids drag deal with uniform, smooth, spherical
particles, whereas practical fluid-solids systems contain rough, non-spherical particles
of different sizes. A narrow particle-size distribution may be characterized by an
average size based on particle surface area; a broad particle-size distribution must be
discretized into two or more size fractions, each characterized by an average particle
size. Efforts to study the effect of nonsphericity (e.g., Leith 1987; Ganser 1993) and
roughness (e.g., Crawford and Plumb 1986) on drag is ongoing, and there are no well-
accepted ways of treating such effects.

Five, it may be necessary to explicitly account for the effect of particle interactions on
the fluid-solids interaction force, although equation (8) contains the implicit assumption
that fluid-particle and particle-particle forces can be separated into two terms. For
example, the averaging required to approximate the particles as a granular continuum
renders the hydrodynamic equations incapable of resolving the wake-dominated micro-
hydrodynamics near the particles that under certain favorable conditions cause the
particles to form clusters. O'Brien and Syamlal (1993) argued that the effect of such
aggregates must be explicitly accounted for in the fluid-solids interaction constitutive
relation.

In the present work, however, we account only for the buoyancy, the drag force, and
momentum transfer due to mass transfer, since those are the most significant forces and
satisfactory formulations of the other effects do not exist. Thus, the fluid-solids interaction
force is written as

where the first term on right side describes the buoyancy force, the second term describes the

(9)I gm     sm  P g   F gm   v sm  v g  R 0m   0m  v sm   ̄ 0m  v g    ,

drag force, and the third term describes the momentum transfer due to mass transfer. R0m is
the mass transfer from the gas phase to solids phase-m, where

and .

(10) 0m  
 

1 for R 0m< 0
0 for R 0m 0

 ̄ 0m  1   0m

When buoyancy is included, as in equation (9), the resulting hydrodynamic equations
possess imaginary characteristics, and the initial-value problems based on such equations are
ill-posed. Any consistent numerical scheme for these equations is unconditionally unstable,
i.e., for any constant ratio ∆t/∆x, geometrically growing instabilities will always appear if ∆x
is made sufficiently small (Gidaspow 1974; Lyczkowski et al. 1978; Stewart and Wendroff
1984). Although questions about the ill-posed equations remain unsettled, ill-posed equations
are widely used in practical, multiphase-flow computations (and other areas such as backward
heat conduction and porous media flows) and yield usable results. Physical damping due to
the momentum exchange term, numerical damping due to donor cell differencing (Stewart
1979), and the presence of a solids-stress term (Gidaspow and Ettehadieh 1983) have been
suggested as mitigating effects that make such computations possible. To obtain well-posed
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equations, Bouillard et al. (1989) dropped the fluid-pressure gradient term in the solids-
momentum equation. This formulation ignores buoyancy and, therefore, is not a satisfactory
model for gas-solids and liquid-solids flows. Accounting for buoyancy by writing the body
force term as (ρs - ρg)g is not satisfactory either, because such a term will only account for
the effect of the fluid-pressure gradient caused by the body force (gravity). Therefore, such a
modification of the theory is not used here, although the corresponding change in the code is
minor.

Drag correlations for a single-solids phase, when generalized to multiple-solids phases,
should satisfy the following condition (Syamlal 1985). A solids phase consisting of identical
particles can be represented either as a single-solids phase of volume fraction εs or as M
distinct solids phases (although of identical particle diameter and density), whose respective
volume fractions (εsm) would sum to εs. In the former case, only one set of solids-phase
momentum equations exists, whereas M sets of momentum equations exist in the latter case. 
We require that the drag relations be generalized in such a way that the M momentum
equations correctly sum to the single momentum equation of the former case.

Two types of experimental data can be used to develop fluid-solids drag formulas. One
type, valid for high value of the solids volume fractions, is packed-bed pressure drop data
expressed in the form of a correlation, such as the Ergun (1952) equation. Such a correlation
must be supplemented with a drag correlation for low values of the solids volume fractions
(Gidaspow 1986). The other type of data is available as correlations for the terminal velocity
in fluidized or settling beds, expressed as a function of void fraction and Reynolds number
(Richardson and Zaki 1954). Syamlal and O'Brien (1987) derived the following formula for
converting terminal velocity correlations to drag correlations:

where Vrm is the terminal velocity correlation for the mth solids phase. Vrm can be calculated

(11)Fgm          3  sm  g  g

4 V2
rm dpm

CDs

 
 
 

 
 
 

   Rem

Vrm

  v sm  v g     ,

from the Richardson and Zaki (1954) correlation only numerically; an explicit formula cannot
be derived. However, a closed formula for Vrm can be derived from a similar correlation
developed by Garside and Al-Dibouni (1977), 

where

(12)
Vrm  0.5   A 0.06Re m                           0.06Re m

2
 0.12Re m(2B  A)  A 2   ,

(13)A   4.14
g   ,

(14)B  
 

0.8  1.28
g if  g  0.85

 2.65
g if  g >0.85

,
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and the Reynolds number of the mth solids phase is given by

Here,  is the single-sphere drag function. Of the numerous expressions available

(15)Rem              dpm  v sm  v g   g

µg

  .

CDs  Rem/V rm

for CDs (see Khan and Richardson 1987), we chose the following simple formula proposed by
Dalla Valle (1948):

To use this formula in equation (11), note that Re must be replaced with Rem/Vrm.

(16)CDs(Re)   
 
 

 
 
 

0.63      4.8

   Re

2
.

2.2.2 Solids-Solids Momentum Transfer

Compared to fluid-solids momentum transfer, much less is known about solids-solids
momentum transfer. It is safe to assume that the major effect is the drag between the phases
because of velocity differences. Arastoopour, Lin, and Gidaspow (1980) observed that such a
term is necessary to correctly predict segregation among particles of different sizes in a
pneumatic conveyor. Arastoopour, Wang, and Weil (1982) studied this effect experimentally
in a pneumatic conveyor. Equations to describe such interactions have been derived or
suggested by several researchers: Soo (1967), Nakamura and Capes (1976), Syamlal (1985,
1987b), and Srinivasan and Doss (1985).

In the present work the solids-solids momentum transfer, Iml, is represented as

where Rml is the mass transfer from solids phase-m to solids phase-l,

(17)I ml     F sml    v sl   v sm  R ml    ml  v sl   ̄ ml  v sm    ,

and .

(18) ml  
 

1 for R ml < 0
0 for R ml  0

 ̄ ml  1   ml

A simplified version of kinetic theory was used by Syamlal (1987b) to derive an
expression for the drag coefficient Fsml, 

(19)Fsml                                                  3   1  e lm    /2  C flm  2 /8  sl  sl  sm sm  dpl  d pm

2
g0lm

  v sl   v sm 

2    sl d 3
pl   smd 3

pm

 ,
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where elm and Cflm are the coefficient of restitution and coefficient of friction, respectively,
between the lth and mth solids-phase particles. The radial distribution function at contact,

, is that derived by Lebowitz (1964) for a mixture of hard spheres:g0lm

(20)g0lm
   1

 g

           3 dpl dpm

 2
g   dpl  d pm

 

M

  1

    
 s 

dp 

.

2.2.3 Fluid-Phase Stress Tensor

The stress tensor for the fluid phase, either gas or liquid, is given by

where Pg is the pressure. The viscous stress tensor, , is assumed to be of the Newtonian

(21)
      
Sg    P g

    

I   
  
 g   ,

form

where  is the identity tensor and  is the strain rate tensor for the fluid phase, given by

(22)
      
 g  2  g µg

    

Dg   g  g tr   

  
Dg

    

I   ,

(23)
      
Dg     1

2     v g       v g

T
   .

2.2.4 Solids-Phase Stress Tensor

In some of the earlier studies the solids phase was assumed to be inviscid, which is a
reasonable assumption for a fully fluidized bed. In such models only the hydrostatic part of
the stress tensor (solids pressure) need be specified, to ensure that the void fraction does not
become less than that in a packed bed. This solids pressure term was specified as an arbitrary
function of void fraction that becomes very large as the void fraction approaches the packed-
bed void fraction (Pritchett, Blake, and Garg 1978; Gidaspow and Ettehadieh 1983). As
pointed out by Massoudi et al. (1992), the solids pressures used in various studies differ by
orders of magnitude. The actual magnitude of the term itself is not of importance in the
theory, so long as it prevents the void fraction from becoming unphysically small. An
alternative approach, which avoids the need to specify a solids pressure function and strictly
prevents the void fraction from becoming less than the packed-bed void fraction, is to treat
the granular media as an incompressible fluid at a certain critical void fraction (Syamlal and
O'Brien 1988). In such a formulation, a solids pressure is calculated so as to keep the void
fraction from becoming less than the packed-bed void fraction. This pressure becomes zero
when the void fraction becomes greater than the packed-bed void fraction.
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A more detailed description of the solids phase stresses is made possible by adopting
appropriate theories proposed in the literature for describing granular flows. The unusual
behavior of granular materials is well reviewed in an article by Jaeger and Nagel (1992):

"Granular materials display a variety of behaviors that are in many ways different from
those of other substances. They cannot be easily classified as either solids or liquids. 
This has prompted the generation of analogies between the physics found in a simple
sandpile and that found in complicated microscopic systems, such as flux motion in
superconductors or spin glasses."

As shown in figure 2, granular flows can be classified into two distinct flow regimes: a
viscous or rapidly shearing regime, in which stresses arise because of collisional or trans-
lational transfer of momentum, and a plastic or slowly shearing regime, in which stresses arise
because of Coulomb friction between grains in enduring contact (Jenkins and Cowin 1979).

Two entirely different approaches are used to describe the stresses in these flow regimes. 

Figure 2. Slowly and Rapidly Shearing Granular Flows

Johnson and Jackson (1987) proposed a model to describe shearing granular flows, combining
the theories of viscous and plastic flow regimes, by simply adding the two formulas. In
MFIX, the theories are combined by introducing a "switch" at a critical packing, εg

*, the
packed-bed void fraction at which a granular flow regime transition is assumed to occur:

where Psm is the pressure and  is the viscous stress in the mth solids phase. The

(24)      
Ssm   

 
 
 
 
 

 P p
sm

    

I  
  
 

p

sm   if  g    
g

 P v
sm

    

I  
  
 

v

sm   if  g >   
g

,

superscript p stands for plastic regime and v for viscous regime. In fluidized-bed simulations,
εg

* is usually set to the void fraction at minimum fluidization.
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Stress formulations for the rapid flow regime have been reviewed in detail by Savage
(1984), Jenkins (1987), Boyle and Massoudi (1989). In a pioneering work, Bagnold (1954)
derived expressions for granular stress by considering the momentum transfer because of
particle collisions. That approach was further extended and refined by several researchers: 
Ogawa, Umemura, and Oshima (1980), Shen and Ackerman (1982), and Haff (1983), to name
a few. Savage and Jeffrey (1981) and Jenkins and Savage (1983) introduced the rigorous
methods of the kinetic theory of gases to describe the collisional transfer of momentum and,
thereby, to derive expressions for the stress tensor. The rapid flow theory is quite well-
developed and has been extended to describe binary mixtures (Shen 1984; Farrell, Lun, and
Savage 1986; Jenkins and Mancini 1987), rough particles (Lun and Savage 1987), and inter-
stitial fluid effects (Ma and Ahmadi 1988). In rapid granular flows, the kinetic energy of
mean flow first degrades into the kinetic energy of random particle fluctuations, and then dis-
sipates as heat because of inelastic collisions. Figure 3 depicts this phenomenon and com-
pares it to similar processes in turbulent single-phase flow. The kinetic energy of fluctuations
is accounted for in the theory by a granular temperature, Θm, which is different from the par-
ticle temperature (a measure of the kinetic energy of molecular vibrations within the particle). 
Formulas for stresses in rapid granular flows have been included in several two-phase flow
models of fluidized beds and pneumatic conveyors: Syamlal (1987c), Boyle and Massoudi
(1989), Sinclair and Jackson (1989), Ding and Gidaspow (1990), and Louge, Mastorakos, and
Jenkins (1991).

The viscous stress terms in equation (24) are based on a modified form of the kinetic

Kinetic Energy of
Random Particle
Motion

Kinetic Energy
of Large Eddy
Motion

Figure 3. Energy Cascade in Granular Flows Compared
                                 With That in Turbulent Flows

theory of smooth, inelastic, spherical particles developed by Lun et al. (1984). The terms
accounting for momentum transfer due to particle translation (kinetic contribution) were
discarded because they make the granular temperature unbounded in the dilute limit of εg

going to one (Syamlal 1987c). In addition, we assume that the Lun et al. (1984) theory can
be extended to describe stresses in multiple granular phases. The resulting expressions for
stress are given below. The granular pressure is given by

(25)Pv
sm   K 1m  2

sm  m   ,
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where

The granular stress is given by 

(26)K1m   2   1  e mm  sm g0mm
   .

where , the second coefficient of viscosity for the mth solids phase, is given by 

(27)
      
 

v

sm   2 µ v
sm

    

Dsm    v
sm tr   

  
Dsm

    

I   ,

 v
sm

The constant K2m is given by

(28) v
sm   K 2m  sm     m .

and the constant K3m is

(29)K2m                       
4 dpm  sm   1  e mm  sm g0mm

3    
     2

3
K3m   ,

The factor , the shear viscosity for the mth solids phase, is given by

(30)

K3m        dpm sm

2  
           
3   3  e mm

  1   0.4   1  e mm   3emm 1  sm g0mm

                
8  sm g0mm  1  e mm

5     
.

µv
sm

The strain rate tensor, , is given by

(31)µv
sm   K 3m  sm     m .

The computation of granular temperature is discussed in section 2.5.

(32)
      
Dsm     1

2     v sm       v sm

T
   .

The stresses in the plastic flow regime are usually described by adopting theories from
the study of soil mechanics (Tuzun et al. 1982; Jackson 1983), although alternative theories
have also been proposed (Goodman and Cowin 1972; Massoudi 1986). The stresses arise
because of particle friction and are described by phenomenological models rather than
mechanistic models as in the case of rapid flow regime. The soil mechanics theories use the
idea of a yield function, which is a relation between the components of the stress tensor for a
material about to yield, and a flow rule, which is a set of relations between the components of
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the stress and the rate of strain tensors. Jackson (1983) has described in detail the critical
state theory proposed by the Cambridge School of Soil Mechanics and has shown that the
theory accounts for consolidation and dilatation observed in granular flows.

Similar to the functions typically used in plastic flow theories (Jenike 1987), an
arbitrary function that allows a certain amount of compressibility in the solids phase
represents the solids pressure term for plastic flow regime:

where P* is represented by an empirical power law

(33)Pp
sm   sm P ,

Typically, values of A=1025 and n=10 have been used.

(34)P  A (   
g   g)

n .

A solids stress tensor based on the critical state theory was included in MFIX with
Gray and Stiles's (1988) three-dimensional generalization of a yield function proposed by
Pitman and Schaeffer (1987). In that formulation, however, the solids pressure term goes to
zero in the limit of zero internal friction -- a condition often used in simulations to turn off
the time-consuming plastic flow computations. This being unsatisfactory, a simpler
formulation, proposed by Schaeffer (1987), is being used in the code now. These stresses are
calculated only for solids phase-1, even when multiple solids phases are specified:

where

(35)
      
 

p

s1  2 µ p
s1

    

Ds1 ,

The second invariant of the deviator of the strain rate tensor is

(36)µp
s1         P sin  

2    I 2D

.

The viscosity values for plastic flow conditions are large. Hence, to stabilize the

(37)
I 2D    1

6   (D s11  D s22 ) 2  (D s22  D s33 ) 2  (D s33  D s11 ) 2

 D 2
s12  D 2

s23  D 2
s31 .

computation, the stress terms are calculated implicitly and an upper limit is specified for the
viscosity, which becomes unbounded as I2D → 0. The implicit stress calculations require a
considerable amount of computational time. By setting the angle of internal friction (φ) to
zero, the plastic stress computations may be turned off. Without the plastic stresses, however,
the computations may predict unphysical solids circulation in packed beds.

Schaeffer (1987) and Schaeffer and Pitman (1988) conducted a linear analysis of
granular flow equations that included frictional stress terms and showed that the equations
may lead to violent instabilities analogous to that of the backwards heat equation. Although
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Schaeffer and Pitman (1988) remind that "linear well-posedness or ill-posedness carries no
rigorous implications for the nonlinear theory," we take the view that the frictional flow
formulation presented here is tentative. As discussed in the previous paragraph, however, the
framework required to implement such a theory exists in the code.

2.3 Conservation of Internal Energy

The internal energy balance for the fluid phase is written in terms of the fluid
temperature:

where  is the fluid-phase conductive heat flux, Hg1 and Hg2 describe fluid-solids interphase

(38)
 g  g Cpg

 
 
 

 
 
 

    T g

 t
  v g   T g      q g  H g1  H g2   H rg

 H wall (T wall  T g) ,

 q g

heat transfer, ∆Hrg is the heat of reaction, and the last term accounts for the heat loss to the
wall. (See section 2.6.7.) The thermal energy balance for the m=1 solids phase is given by

where  is the solids-phase-1 conductive heat flux, Hg1 is fluid-solids interphase heat

(39) s1  s1 Cps1

 
 
 

 
 
 

     T s1

 t
  v s1   T s1      q s1  H g1   H rs1    ,

 q s1

transfer, and ∆Hrs1 is the heat of reaction. All other solids phases are assumed to be in
thermal equilibrium, to simplify the numerical solution of the energy equations. The thermal
energy balance for all the other solids phases (m=2 to M), in terms of an average temperature
Ts2, is

where  is the an average solids-phase conductive heat flux, Hg2 is fluid-solids interphase

(40)
 

M

m 2

 sm  sm Cpsm

 
 
 

 
 
 

     T s2

 t
  v sm   T s2      q s2  H g2   H rs2    ,

 q s2

heat transfer, and ∆Hrs2 is the heat of reaction.

A number of simplifying assumptions, none of which should be significant in typical
applications to fluid-solids reactors, have been made in the formulation of thermal energy
equations (38), (39), and (40):

1) The irreversible rate of increase of internal energy due to viscous dissipation has
been neglected. Such terms are negligible except in the case of velocities approaching
the speed of sound.

2) The reversible rate of fluid internal energy change due to compression or expansion
has been neglected. Such terms will be important in transient, compressible flows.
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3) Interfacial flow work terms have not been included, which may lead to a violation
of the second law (Lyczkowski, Gidaspow, and Solbrig 1982; Arnold, Drew, and Lahey
1990). This does not necessarily imply large errors in the calculations, because such
terms in usual MFIX applications are negligible. Furthermore, a satisfactory
formulation including such terms does not exist.

4) The heat of reaction term includes both the enthalpy change due to reaction and the
energy transfer because the products and reactants may be at different temperatures. 
(See section 2.3.4.)

5) Heat transfer between different solids phases is negligible.

6) Radiative heat transfer is not considered.

2.3.1 Fluid-Solids Heat Transfer

The heat transfer between the fluid and solids is assumed to be a function of the
temperature difference:

where γgm is the heat transfer coefficient between the fluid phase and the mth solids phase. 

(41)Hgm     gm   Tsm  T g   ,

Since we have assumed that solids phases 2 to M are in thermal equilibrium, γg2 is the sum
of the heat transfer coefficients γgm for m=2 to M. γgm is determined from the heat transfer

coefficient in the absence of mass transfer, , corrected for interphase mass transfer by 0
gm

using the following formula derived from film theory (Bird, Stewart, and Lightfoot 1960,
p. 658):

The heat transfer coefficient  is related to the particle Nusselt number Num:

(42) gm                Cpg R0m

e   Cpg R0m/  0
gm  1

.

 0
gm

where Num is the Nusselt number for the individual particles constituting the mth solids phase.

(43) 0
gm              6 k g  sm Nu m

dpm
2

   ,

The Nusselt number is typically determined from one of the many correlations reported
in the literature for calculating the heat transfer between particles and fluid in packed or
fluidized beds (e.g., Zabrodsky 1966; Gelperin and Einstein 1971; Gunn 1978). Syamlal and
Gidaspow (1985) used a set of correlations presented by Zabrodsky (1966). Following
Kuipers, Prins, and van Swaaij (1992), MFIX now uses the following correlation proposed by
Gunn (1978) applicable for a porosity range of 0.35-1.0 and a Reynolds number up to 105:
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The Prandtl number is defined as

(44)
Num  (7  10  g  5  2

g) (1  0.7Re 0.2
m Pr 1/3 )

 (1.33  2.4  g  1.2  2
g )Re 0.7

m Pr 1/3 .

2.3.2 Conductive Heat Flux in Fluid Phase

(45)Pr       Cpg µg

k g

.

The conductive heat flux within the fluid phase, , is described by Fourier's law: q g

where kg is the gas thermal conductivity.

(46) q g     g kg  T g   ,

2.3.3 Conductive Heat Flux in Solids Phase

In a simulation of the heat transfer from a fluidized bed to a wall, Syamlal and
Gidaspow (1985) found it necessary to consider solids-phase conductive heat flux to be able
to calculate bed-to-wall heat transfer coefficients comparable to experimental measurements. 
The conductive heat flux in the solids phase, , is assumed to have a form similar to that in q sm

the fluid phase:

where ksm is the particle phase conductivity. Since solids phases m=2 to M are considered to

(47) q sm     sm ksm  T sm  ,

be in thermal equilibrium, a sum of the flux terms is used to represent conductive fluxes in
solids phase-2.

Syamlal and Gidaspow (1985) used a model due to Zehner and Schlunder (Bauer and
Schlunder 1978) to determine the solids phase conductivity. Kuipers, Prins, and van Swaaij
(1992) used a similar, but improved, way to determine the solids-phase conductivity. Their
model accounts for direct conduction through the fractional contact area ζ and indirect con-
duction through a wedge of gas trapped between the particles. The model has been simplified
by neglecting the radiation between the particles and the resistance to heat transfer due to
inhibition of the normal movement of gas molecules between the particles (Smoluchowski
effect). Following Kuipers, Prins, and van Swaaij (1992), we also delete the contribution of
gas conductivity from the formulation to obtain:
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where

(48)      k sm

k g

                      k Rkm  (1   k)  rm

     1   g

   ,

and, for spherical particles,

(49) rm            2

  1  b/R km

 
 
 
 

 
 
 
 

              Rkm  1 b /R km

  1  b /R km

2
ln   b/ R km           b  1

  1  b/R km

     b  1
2

  ,

(50)Rkm     k pm

k g

   ,

(51)
b  1.25

 
 
 

 
 
 

      1   g

 g

10/9

   .

The contact area fraction has the value φK = 7.26 x 10–3. By using this model for fluidized
beds, we are clearly extending its applicability beyond the packed-bed range, where enduring
contact between particles occurs. We also assume that the model can be extended to describe
conduction in multiparticle systems. As a simpler alternative, ksm can be assumed to be a
small multiple of kg, by noting that for typical values of kpm and the void fraction, the ratio of
ksm to kg is between 1 and 5 (Syamlal and Gidaspow 1985).

2.3.4 Heat of Reaction

Since the energy equation is formulated in terms of the temperatures, the heat of
reaction must be stated explicitly. Expressions for the heat of fluid-solids reactions must
account for the difference in temperature between the phases. (See figure 4.) Let ∆H0 be the
heat of reaction at the standard temperature of T0 for the general fluid-solids reaction

a A(s) + b B(g) → c C(s) + d D(g).
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Figure 4. Computation of Heat of Reaction for
                                    Reactants at Different Temperatures

Then the enthalpy change due to the reaction is

In a fluid-solids reaction, the partitioning of the heat of reaction between the phases is

(52)

 H r  a
 
 
T0

Ts1

CpA dT  b
 
 
T0

Tg

CpB dT   H 0

 c
 
 
Ts1

T0

CpC dT  d
 
 
Tg

T0

CpD dT

  H 0  
 
 
Ts1

T0

(aC pA  cC pC) dT  
 
 
Tg

T0

(bC pB dC pD) dT .

arbitrary, since the averaging required to derive the hydrodynamic equations does not contain
any information regarding the gas-solids interface. The actual chemical reactions occur in an
interface region of finite dimensions. For example, in an analytical study of single-particle
char gasification, Arri and Amundson (1978) showed that the hydrogen and carbon monoxide
flame front may reside at the core surface, in the ash layer, or in the boundary layer surround-
ing the particle, depending upon process conditions. The partitioning of the heats of reaction,
therefore, must be based on physical arguments. To partition the heat of the coal combustion
reaction C + O2 → CO2, for example, Syamlal and Bissett (1992) assigned the heat of reaction
for the step C + ½O2 → CO to the solids phase and the heat of reaction for the step
CO + ½O2 → CO2 to the gas phase.
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2.4 Conservation of Species

The gas and solids phases may contain an arbitrary number of chemical species, Ng. 
The species conservation equation for the gas phase is

where Xgn is the mass fraction and Rgn is the rate of formation of gas species n. The species

(53)       
 t

(  g gXgn)    (  g gXgn v g)  R gn ,

conservation equation for solids phase m is

where Xsmn is the mass fraction and Rsmn is the rate of formation of solids phase-m, species n. 

(54)       
 t

(  sm  sm Xsmn)    (  sm  sm Xsmn  v sm)  R smn ,

The above equations consider the accumulation, convection, and rate of reaction but neglect
the diffusive flux.

2.4.1 Reaction Kinetics

Reaction kinetic expressions need to be supplied to close the species balance equations. 
Such expressions will depend upon the specific chemistry being described. As an example,
consider a coal combustion reaction,

2C + O2 → 2CO .

The most common way of determining a rate expression for this reaction is by assuming a
shrinking core mechanism, as depicted in figure 5, which considers the three resistances:
external film diffusion, diffusion through the ash layer, and the reaction at the surface of the
unreacted core (Yoon, Wei, and Denn 1978; Wen, Chen, and Onozaki 1982). A rate expres-
sion is then derived by assuming a pseudo-steady state; that is, the time constant for the
shrinking of the core is much larger than that for the transport of oxygen to the core. The
rate of formation of oxygen is then given by (O2 is gas species 1, CO is gas species 2, and C
is solid species 1)

(55)
Rg1  R 02

                  
 6  sm pO2

dpm

 
 
 

 
 
 

   1
k fm

    1
kam

    1
k rm

,
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Figure 5. Shrinking Core Model for Coal Combustion

where  is the partial pressure of oxygen. The film resistance is given bypO2

where  is the diffusion coefficient and  is the gas constant for oxygen, Tfm is an

(56)kfm          
DO2

Shm

dpmRO2
Tfm

,

DO2
RO2

average film temperature, and the Sherwood number [similar to equation (44) for the Nusselt
number] is given by (Gunn 1978):

The Schmidt number is defined as

(57)
Shm  (7  10  g  5  2

g) (1  0.7Re 0.2
m Sc 1/3 )

 (1.33  2.4  g  1.2  2
g )Re 0.7

m Sc 1/3 .

The ash layer resistance is given by

(58)Sc       µg

 g DO2

.

where De is an effective ash diffusivity given by (Wen, Chen, and Onozaki 1982)

(59)kam                 2 r dmDe

(1  r dm) d pmRO2
Tsm

,

(60)De  D O2
 2.5

ash
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and the ratio of core diameter to particle diameter, 

can be related to the solids mass fraction as 

(61)r dm     dc

dpm

,

where Xs1 is the carbon mass fraction, Xs4 is the ash mass fraction, and superscript 0 indicates

(62)

r dm  
 
 
 
 

 
 
 
 

     X0
s4 Xs1

X0
s1 Xs4

1/3

,

the initial values of those quantities. Wen et al. (1982) obtained the ash porosity from

The surface reaction resistance is given by (Desai and Wen 1978)

(63) ash  0.25  0.75 (1  X 0
s4) .

From equation (55), the other formation rates can be obtained as

(64)k rm  23227 r 2
dme    27000/1.987T sm .

and

(65)Rg2  R CO      56
32

Rg1

Since this reaction occurs in the particle, the heat of reaction is assigned to the solids phase: 

(66)Rs1  R C     24
32

Rg1 .

where the reference temperature is 298 K.

(67) H rs1  
  
 52832  C pC(T s1  298)  (C pO2

 2C pCO)(T g  298)       Rg1

32
,

2.5 Conservation of Granular Energy

Kinetic theory describing the flow of smooth, slightly inelastic, spherical particles was
used in the derivation of the constitutive relation describing the stress tensor in the mth solids
phase, , as presented in section 2.2.4. The resulting constitutive relations contain the

quantity Θm, called the "granular temperature" of the mth solids phase. The granular tempera-
ture is proportional to the "granular energy" of the continuum, where granular energy is
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defined as the specific kinetic energy of the random fluctuating component of the particle
velocity:

where  is the fluctuating component of the instantaneous velocity  of the mth solids

(68)   3
2

 m     1
2

 C2
m ,

C m  c m

phase defined by

The transport of granular energy in the mth solids phase is governed by the relation

(69) c m    v sm + C m   .

where  is the rate of granular energy dissipation due to inelastic collisions, and  is the

(70)   3
2

 
 
 

 
 
 

             sm sm m

 t
      sm sm m  v sm  

  
Ssm:   v sm     q  m

   m
  gm   

M

l  1
l  m

 lm  ,

  m
q m

diffusive flux of granular energy. The term φgm accounts for the transfer of granular energy
between the gas phase and the mth solids phase, whereas φlm accounts for the transfer of
granular energy between the mth and lth solids phases. Supplying constitutive relations for
equation (70) and numerically solving the M coupled partial differential equations it repre-
sents is an onerous task.

This task is simplified in this work by first deriving a single partial differential equa-
tion (PDE) that represents the transport of the granular kinetic energy of the mixture of all
solids phases. This "mixture granular energy equation" is formed by summing the individual
PDEs of equation (70)

Now define a mixture granular temperature

(71)

   3
2

    
 t  

M

m 1

 sm sm m   3
2

   

M

m 1

 sm sm m  v sm
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m 1
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(72)               
 

M

m 1
   sm  sm  m

 

M

m 1
   sm  sm

25



and a mixture density

Therefore,

(73) s   

M

m 1

 sm  sm .

Assume equipartition of granular energy, i.e.,

(74)
 

M

m 1

 sm sm m   s  .

where mpm is the mass of the particles that constitute solids phase m. Now, eliminating the

(75)mpm m  mpl  l ,

mass of the particles in favor of density and diameter and summing equation (75) over sub-
script l yields

Then

(76)
 sm m                s  

d 3
pm  

M

l  1

(  sl /d 3
pl )

.

Let an average velocity be given by

(77) 

M

m 1

(  sm  sm  m  v sm)              s  
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pm) .

so that

(78) v s               
 

M

m 1
   sm  v sm /d 3

pm

 

M

l  1
   sl /d 3
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,

Then the averaged granular energy equation becomes

(79) 

M

m 1

 sm  sm  m  v sm   s   v s .
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After Θ is determined by solving equation (80), values of Θm are obtained from 

(80)

   3
2

    
 t

 s     3
2

   s   v s

  
 
 
 
 

 
 
 
 

  
Ssm:   v sm     q  m

   m
  gm   

M

m 1
m l

 lm    .

The implementation of the detailed granular energy equation described above in MFIX

(81)
 m                    s  

 sm d 3
pm 

M

l  1

(  sl /d 3
pl )

.

is still under development. The current version of the code uses an algebraic expression for
granular temperature, Θm, obtained from the energy equation of Lun et al. (1984), by assuming
that the granular energy is dissipated locally; neglecting the convection and diffusion
contributions; and retaining only the generation and dissipation terms (Syamlal 1987c). The
resulting algebraic granular energy equation is

where K4m is given by

(82)

(83)

2.5.1 Diffusive Flux of Granular Energy

The granular energy equation for the mth solids phase, equation (70), contains the term
 describing the diffusive flux of granular energy, q  m

As in the case of  (section 2.2.4), the kinetic contribution in Lun et al. (1984) theory has

(84)

been deleted. In addition, the term in the collisional contribution to  that is proportional q  m

to  was neglected. The diffusion coefficient for granular energy, , is described by
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where

(85)

2.5.2 Granular Energy Dissipation

(86)

The term  represents the rate of granular energy dissipation within the mth solids

phase due to collisions between the particles constituting the continuum. This term is
represented by the expression derived by Lun and others (1984),

where K4m has already been defined in equation (83).

(87)

2.5.3 Granular Energy Transfer

The term φgm accounts for the transfer of granular energy between the fluid phase and
the solids phase. Physically, this represents the transfer to the fluid phase of the kinetic
energy of random fluctuations in particle velocity. An expression for this transfer is given by
Ding and Gidaspow (1990):

The term φlm in the granular energy equation accounts for the transfer of granular energy

(88) gm    3 F gm m  .

between the mth and lth solids phase continua due to collisions between their respective
particles. This contribution is ignored in this work:

2.6 Initial and Boundary Conditions

(89)

2.6.1 Initial Conditions

The initial values of all field variables (ε, Pg, Tg, Ts1, Ts2, , , Xgn, Xsmn) must be v g  v s

specified for the entire computational domain. However, the initial transients are usually not
of interest, and the solution is governed by the boundary conditions. In that case the initial
conditions need only be accurate enough to allow convergence. In fluidized beds, for exam-
ple, the solids velocity is usually set to zero, and the gas velocity is given some uniform
unidirectional value.
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2.6.2 Inflow Boundary

An inflow boundary condition should be specified at a location where uniform flow is
expected. All the field variables need to be specified at the boundary. Two types of inflow
boundary conditions are possible, constant pressure or constant mass flux. The constant mass
flux condition is more commonly used.

2.6.3 Outflow Boundary

Specified constant pressure is the most common condition for the fluid outflow
boundary. MFIX also allows the user to specify constant velocity at outflow boundaries. 
This condition should be used only when another constant pressure outflow condition has
been specified and the specified outflow is much less than that expected from the constant
pressure outflow boundary.

2.6.4 Impermeable Walls

At internal or external impermeable walls, the normal velocities are set to zero. The
condition for the tangential components is specified either as a no-slip or as a free-slip condi-
tion. These boundary conditions are imposed with the help of fictitious boundary cells. The
no-slip condition is specified as

(90)(v g) fictitious cell   (v g) cell next to wall ,

so that the velocity at the wall is zero. The free-slip condition is specified as

(91)(v g) fictitious cell  (v g) cell next to wall ,

so that the gradient of the velocity at the wall is zero.

2.6.5 Impermeable and Semipermeable Internal Surfaces

MFIX allows the user to specify internal surfaces, which are infinitesimally thin walls
or porous surfaces in the flow domain, exerting no tangential stresses (free-slip). At an
impermeable internal surface, the normal gas and solids velocity are set to zero. At a semi-
permeable internal surface, the solids velocity is given a user-specified fixed value. The gas
velocity is allowed to vary, and the flow resistance offered by the porous media is calculated
from the formula

using the x-component as an example.

(92)f gx     µg

C1

ug    1
2

C2  g |u g| u g ,
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2.6.6 Cyclic Boundaries

Cyclic boundary conditions are automatically specified for the θ direction in cylindrical
coordinates. Rotationally (without pressure drop) or translationally (with pressure drop) cyclic
boundary conditions may be specified at any of the boundaries.

2.6.7 Wall Heat Transfer

The wall heat transfer in a fluidized bed can be predicted by using a sufficiently fine
grid near the walls (Syamlal and Gidaspow 1985). This approach, however, is too expensive
for practical computations. Therefore, the boundary conditions for the energy equations in
MFIX are set such that the walls are non-conducting, and the term Hwall (Twall-Tg) is provided
to account for wall heat loss. Hwall and Twall are user-defined functions of space and time that
allow the user to specify complex heat loss characteristics.

2.6.8 Boundary Conditions for Granular Energy Equation

At the present time no boundary condition is required for the granular energy equation
because the algebraic form of the equation is solved.
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3 Summary of Governing Equations and Constitutive Relations

The equations that are solved in the current version of MFIX are summarized in this
section.

Gas continuity:

(93)       
 t

(  g g)    (  g g v g)   

Ng

n 1

Rgn

Solids continuity:

(94)       
 t

(  sm sm)    (  sm sm v sm)   

Nsm

n 1

Rsmn

Gas momentum balance:

(95)

       
 t

(  g g v g)    (  g g v g v g)    g  P g    
  
 g   

M

m 1

Fgm(  v sm  v g)  f  
g

  g g g   

M

m 1

R0m   0m v sm  ̄ 0m v g

Solids momentum balance:

(96)

       
 t

(  sm sm v sm)    (  sm sm v sm v sm)    sm P g    
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 F gm(  v sm  v g)   

M
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Fslm (  v sl   v sm)

  sm sm g   

M

l  0

Rml    ml  v sl   ̄ ml  v sm
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Gas energy balance:

(97)
 g gCpg

 
 
 

 
 
 

    T g

 t
  v g   T g      q g   g1 (T s1  T g)   g2 (T s2  T g)   H rg

 H wall (T wall  T g)

Solids - 1 energy balance:

(98) s1 s1Cps1

 
 
 

 
 
 

     T s1

 t
  v s1   T s1      q s1   g1 (T s1  T g)   H rs1

Solids - 2 energy balance:

(99)
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 t
  v sm   T s2      q s2   g2 (T s2  T g)   H rs2

Gas species balance:

(100)       
 t

(  g gXgn)    (  g gXgn v g)  R gn

Solids species balance:

(101)       
 t

(  sm smXsmn)    (  sm smXsmn v sm)  R smn

Gas-solids drag:

(102)Fgm         3 sm g g

4V2
rmdpm

  0.63  4.8        Vrm/Re m

2

  v sm  v g  
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(103)Vrm  0.5   A 0.06Re m                          (0.06Re m)
2  0.12Re m(2B  A)  A 2

(104)A   4.14
g

(105)
B  

 
 
 
 
 

0.8  1.28
g if  g  0.85

 2.65
g if  g >0.85

(106)Rem              dpm  v sm  v g   g

µg

Solids-solids drag:
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Gas-phase stress:

(109)
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Note that is set to zero in the current version (1.70) of MFIX.
      
 g
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Granular stress:

(110)
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Plastic regime:
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Viscous regime:
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(118) v
sm  K 2m sm     m

(119)µv
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Gas-solids heat transfer:

(124) gm               Cpg R0m

e   Cpg R0m/  0
gm  1

.

(125) 0
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(126)
Num  (7  10  g  5  2

g) (1  0.7Re 0.2
m Pr 1/3 )

 (1.33  2.4  g  1.2  2
g )Re 0.7

m Pr 1/3 .

Granular energy equation:

(127)

(128)K4m                 12(1  e 2
mm)  sm g0mm

dpm    
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5 Nomenclature

A - Function of void fraction defined by Eq. (13)

b - Function of void fraction defined by Eq. (51)

B - Function of void fraction defined by Eq. (14)

CDs - Single particle drag function

Cpg - Specific heat of the fluid phase; J/(kg⋅K)

Cflm - Coefficient of friction for solids phases l and m.

Cpsm - Specific heat of the mth solids phase; J/(kg⋅K)

dpm - Diameter of the particles constituting the mth solids phase; m

DO2 - Oxygen diffusivity; m2/s

- Rate of strain tensor, fluid phase, Eq. (23); s–1
      
Dg

- Rate of strain tensor, solids phase-m; s–1
      
Dsm

elm - Coefficient of restitution for the collisions of mth and lth solids phases

- Fluid flow resistance due to porous media; N/m3f g

Fgm - Coefficient for the interphase force between the fluid phase and the mth

solids phase; kg/(m3⋅s)

Fslm - Coefficient for the interphase force between the lth solids phase and the mth

solids phase; kg/(m3⋅s)

- Acceleration due to gravity; m/s2 g 

- Radial distribution function at contactg0lm

Hg1 - Heat transfer from fluid to solids phase-1; J/(m3⋅s)

Hg2 - Heat transfer from fluid to solids phases-2 to M; J/(m3⋅s)

∆Hrg - Heat of reaction in the fluid phase; J/(m3⋅s)
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∆Hrsm - Heat of reaction in the mth solids phase; J/(m3⋅s)

Hwall - Wall heat transfer coefficient; J/(m3⋅K⋅s)

I2D - Second invariant of the deviator of the strain rate tensor for solids phase-1,
Eq. (37); s–2

Igm - Momentum transfer from fluid phase to mth solids phase; N/m3

Iml - Momentum transfer from mth to lth solids phases; N/m3

kam - Ash layer resistance; s/m

kfm - Film resistance; s/m

kg - Fluid phase conductivity; J/(m⋅K⋅s)

kpm - Conductivity of material that constitutes solids phase-m; J/(m⋅K⋅s)

krm - Surface reaction resistance; s/m

ksm - Solids phase-m conductivity; J/(m⋅K⋅s)

- Granular energy conductivity; J⋅s/m3k m

K1m - Granular stress constant defined by Eq. (26); kg/m3

K2m - Granular stress constant defined by Eq. (29); kg/m2

K3m - Granular stress constant defined by Eq. (30); kg/m2

K4m - Granular stress constant defined by Eq. (83); kg/m4

l - Index of the lth solids phase; also used as a miscellaneous index

m - Index of the mth solids phase. "m=0" indicates fluid phase

M - Total number of solids phases

Mw - Average molecular weight of gas

n - Index of the nth chemical species

Ng - Total number of fluid phase chemical species

Nsm - Total number of solids phase-m chemical species
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Num - Nusselt number

Pg - Pressure in the fluid phase; Pa

pO2 - Partial pressure of oxygen; Pa

- Pressure in Solids phase-m, plastic regime; Pa Pp
sm

- Pressure in Solids phase-m, viscous regime; Pa Pv
sm

P* - Total solids pressure in plastic regime; Pa

Pr - Prandtl number, Eq. (45)

- Fluid-phase conductive heat flux; J/(m2⋅s) q g

- Solids-phase-1 conductive heat flux; J/(m2⋅s) q s1

- Solids-phase-2 to M conductive heat flux; J/(m2⋅s) q s2

- Diffusive flux of granular energy; J/(m2⋅s) q  m

rdm - Ratio of core diameter to particle diameter

R - Universal gas constant; Pa⋅m3/(kmol⋅K)

Rem - mth solids phase particle Reynolds number, Eq. (15)

Rkm - Ratio of solids to fluid conductivity, Eq. (50)

Rml - Rate of transfer of mass from mth phase to lth phase. l or m = 0 indicates
fluid phase; kg/(m3⋅s)

Rgn - Rate of production of the nth chemical species in the fluid phase; kg/(m3⋅s)

Rsmn - Rate of production of the nth chemical species in the mth solids phase;
(kg/m3⋅s)

Sc - Schmidt number, Eq. (58)

- Fluid phase stress tensor; Pa
      
Sg

Shm - Sherwood number

- Solids phase-m stress tensor; Pa
      
Ssm
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t - Time; s

Tg - Thermodynamic temperature of the fluid phase; K

Ts1 - Thermodynamic temperature of the solids phase no. 1; K

Ts2 - Average thermodynamic temperature of the solids phases, m = 2,...,M; K

Twall - Wall temperature; K

- Fluid phase velocity vector; m/s v g

- mth solids phase velocity vector; m/s v sm

Vrm - The ratio of the terminal velocity of a group of particles to that of an
isolated particle

Xgn - Mass fraction of the nth chemical species in the fluid phase

Xsmn - Mass fraction of the nth chemical species in the mth solids phase

GREEK LETTERS

γgm - Fluid-solids heat transfer coefficient corrected for interphase mass transfer;
J/(m3⋅K⋅s)

- Fluid-solids heat transfer coefficient not corrected for interphase mass 0
gm

transfer; J/(m3⋅K⋅s)

- Granular energy dissipation due to inelastic collisions; J/m3⋅s  m

εg - Volume fraction of the fluid phase (void fraction)

- Packed-bed (minimum) void fraction  
g

εsm - Volume fraction of the mth solids phase

η - Function of restitution coefficient, Eq. (86)

Θm - Granular temperature of phase-m; m2/s2

λrm - Solids conductivity function defined by Eq. (49)

- Second coefficient of solids viscosity, viscous regime; kg/(m⋅s) v
sm

µg - Molecular viscosity of the fluid phase; kg/(m⋅s)
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- Solids viscosity, plastic regime; kg/(m⋅s)µp
s1

- Solids viscosity, viscous regime; kg/(m⋅s)µv
s1

ξml - ξml = 1 if Rml < 0; else ξml = 0.

ρg - Microscopic (material) density of the fluid phase; kg/m3

- Macroscopic (effective) density of the fluid phase, Eq.(2); kg/m3  
g

ρsm - Microscopic (material) density of the mth solids phase; kg/m3

- Macroscopic (bulk) density of the mth solids phase, Eq. (3); kg/m3  
sm

- Fluid phase deviatoric stress tensor; Pa
      
 g

- Solids phase-m deviatoric stress tensor, plastic regime; Pa
      
 

p

sm

- Solids phase-m deviatoric stress tensor, viscous regime; Pa
      
 

v

sm

φ - Angle of internal friction

φgm - Granular energy transfer to fluid phase; J/(m3⋅s)

φlm - Granular energy transfer between solids phases; J/(m3⋅s)

φk - Contact area fraction in solids conductivity model
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